

Digital Signal Processors Using VLSI and FPGA’s

Jeremy R. Barsten
Jeremy Stockwell

Advisors:
Dr. Vinod B. Prasad

Dr. Thomas L. Stewart

Bradley University Department of Electrical and
Computer Engineering

 2

Abstract

 This project deals with the design and implementation of a general-purpose signal

processor using digital technology and design, namely VHDL, FPGA (Field

Programmable Gate Arrays), and VLSI (Very Large Scale Integration). This processor

consists of a multiplier and adder, a digital filter, and a “shift-and-rotate” type of data

management. Once all stages are completed, the processor will be flashed to a Xilinx

FPGA board for testing and demonstration.

 3

Table of Contents

Introduction 3

Overall Design 5

Signal Converters 6

Adder and Multiplier Stages 7

Adder: VHDL and VLSI Design 7

Multiplier: VHDL and VLSI Design 10

Data Management 17

Results and Conclusions 22

References 25

Appendix A: L-Edit Circuits and Simulations 26

Appendix B: VHDL Code 32

 4

Introduction

 In the world today, the digital product industry is ever growing, and the

development of digitally based products is rising. Various industries such as

audio, video, and cellular industry rely heavily on digital technology. A great part

of this deals with digital signal processing. This aspect in engineering has gained

increasing interest, especially with much of the world now turning to wireless

technology and its applications to keep businesses and industries connected.

The world of digital technology is certainly one that will be present for many years

to come.

 Digital signal processing is an area of electrical engineering that has

rapidly grown in the past 30 years. Advances in digital hardware and digital

computers have spurred this growth. Current integrated circuit technology,

namely very-large-scale integration (VLSI), made it possible to develop smaller,

faster, and cheaper special-purpose digital processing. These circuits made it

possible to construct digital systems capable of performing the complex digital

signal processing tasks that are usually too difficult or too expensive to be

performed by analog circuitry. Today, many of the functions usually performed

by analog means are now realized by less expensive and more reliable digital

hardware1.

 The purpose of this project was to design and construct two high-speed,

application-specific digital signal processors (DSP’s). One processor was

developed by Jeremy Barsten utilizing Very High Speed Integrated Circuit

Hardware Descriptive Language (VHDL) to be implemented utilizing a Field

 5

Programmable Gate Array (FPGA). Jeremy Stockwell designed the other in

VLSI, and this design will be sent for fabrication on an ASIC chip. However,

because of the complexity of the design, the VLSI-based processor was a scaled

down version from that done in VHDL.

Overall Design

 Digital Signal Processing is the process of manipulating a digital

input utilizing a transfer function. This project implemented a second order Direct

Form II realization of an infinite-impulse response (IIR) filter. Utilizing this format

we derived the following transfer function necessary to process the input signal:

y(n)=b0•w(n) + b1•w(n-1) + b2•w(n-2), where w(n)=x(n) – a1•w(n-1) – a2•w(n-2)

This simplifies to:

Y(n)=b0•x(n) + b1•x(n-1) + b2•x(n-2) – a1•y(n-1) – a2•y(n-2)

The coefficients a1, a2, b0, b1, and b2 can be changed to adapt the processor to

many different applications. The block diagram for this Direct Form II

implementation is shown in Figure 1. Based on this diagram and the above

equations, there are four discrete subsystems that must be designed in order to

realize this processor. These components are signal converters, a two’s

complement signed-multiplier, a full adder, and a block of data storage. A top-

down design approach was implemented so that each component was designed

and tested individually before being added to the overall system. Once all the

components were pieced together, the entire DSP would be tested.

1 Information taken from Digital Signal Processing by John G. Proakis and Dimitris G. Manolakis

 6

 x(n) w(n) b0 y(n)

 -a1 b1

 -a2 b2 w(n-1)

 w(n-2)

Figure 1: Direct Form II realization of an IIR Filter

Signal Converters

 Many of the signals today are analog in nature. However, analog circuits

do not provide the reliability and speed of digital circuits. In order to process a

signal using a digital circuit, the signal must be converted to a digital one before

being sent to the processor. Also, the digital output of the processor must be

converted back to an analog one before being passed onto other applications.

Therefore, two signal converters are required at each stage of the processor: a

analog-to-digital (A/D) converter at the input stage and a digital-to-analog (D/A)

at the output stage. The block design representing this is shown in Figure 2.

 MSB MSB

Analog Analog
 Input Output

 LSB LSB

Figure 2: Block diagram showing the connections of
the A/D and the D/A converter

 The converters chosen for this project are the ones on the FPGA board

used in this project. They are part of the circuit board and have already been

Z-1

Z-1

Digital
Signal

Processor

8-bit
A/D

Converter

8-bit
D/A

Converter

 7

interfaced with the FPGA2. These will be utilized instead of setting up external

circuitry to run the conversions.

Adder and Multiplier Stages

 As evident through the transfer function and Figure 1, multiplication and

addition are the main functions of digital signal processing. The input values and

previous output values must be multiplied by certain coefficients, and then these

products must be summed together. Also, each of these must be designed so

that they can process negative two’s compliment values due to the values of the

coefficients.

 Adder: VHDL and VLSI Design

Some differences exist between the design in VHDL and VLSI. In VHDL, the first

task was to determine the capabilities of the Xilinx compiler. To do this a ripple

carry adder (Figure 3) and a carry look-ahead (Figure 4) adder were created with

VHDL.

Figure 3: Logical diagram for a 4-bit ripple carry adder.

2 The FPGA Exansion board used was developed by Brett Marshal and Mike Parker in a previous project.

 8

Figure 4: Logical diagram for a 4-bit carry look-ahead adder

 A carry ripple adder has a delay of 2n+2 gate delays. To decrease this

delay a carry look-ahead adder can be created. This type of adder requires more

logic, but the speed advantage is significant. For example, a 16-bit carry ripple

adder results in 34 gate delays, while a carry look-ahead adder only has 10 gate

delays.

To test the Xilinx compiler a simple adder (a + b = c) was created in

VHDL. Then all three adders were simulated and the delays were compared to

determine what type of adder the compiler created. The results showed that the

complier created a carry look-ahead or equivalent adder.

 Carry Look-ahead

Adder
Ripple Adder Simple Adder

Delay Times 11.05ns 22.43ns 11.05ns
Figure 5: Table of delay times from CLA, carry ripple, and simple adders

 9

To improve the stability and accuracy of the adder, overflow protection

was also included. If this was not added and an overflow occurred, then the

processor would produce erroneous information.

The design of the adder in VLSI was different than that in VHDL for

different reasons. Because of the complexity of the carry-look-ahead adder, a

simply ripple-carry adder was used in its place. Not only would design for a

carry-look-ahead adder consume the most time, but it would also require a large

amount of chip area.

A cellular approach was used in the design of the ripple-carry adder. First,

a simple one-bit full adder was designed3. This design, shown in Figure 6,

consisted of three inputs, two addend bits and carry-in bit, and produced the

appropriate carry-out bit and sum bit. This design was first simulated in a logic-

design program before it was built and simulated in VLSI. Once functioning

correctly, the appropriate CMOS circuit was built in L-Edit Pro and tested by

extracting a Spice file. (The VLSI adder cell schematic is shown in Appendix

Figure A1.) Simulation proved that this design did work by following the

appropriate truth table.

Figure 6: Design of a full-adder cell used to create the
ripple-carry adder in VLSI.

3 Circuit design taken from Physical Design of CMOS Integrated Circuits Using L-Edit by John P.
Uyemura.

 10

 Once the full-adder cell worked correctly, five identical cells could be

cascaded together to form the full 5-bit adder. This adder would take two 5-bit

numbers (where the most significant bit of each was the sign bit) and perform the

appropriate two’s complement addition. This adder would then be placed at the

output of the multiplier stage in the overall design for the processor. The logical

design for the 5-bit ripple carry adder is shown in Figure 7. Because the VLSI

full-adder cell simulated correctly, five identical cells were cascaded together in

L-Edit, where the carry-out of each cell was connect to the carry-in of the

adjacent cell. When the design was complete, the CMOS design (shown in

Figure A2) was tested to show that the ripple-carry adder functioned correctly in

VLSI. Several simulations showed that the adder worked for the most part, but

some problems did exit with overflow. These points will be discussed later in the

paper.

Figure 7: Logical design of a 5-bit ripple carry adder
used to create the CMOS signed adder.

Multiplier: VHDL and VLSI Design

Many different multipliers were designed in VHDL to determine the best

ratio of size versus speed. Two types of multipliers, serial and parallel, were

 11

investigated. A serial multiplier is easier to create and takes less area on the

FPGA, but the speed is decreased nearly n times for a n-bit multiplier. A parallel

multiplier has the advantage of speed and would be utilized if area was of no

concern.

To conclude what course to take, first, a serial multiplier was created.

Digital signal processors utilize signed numbers, so a signed multiplier needed to

be designed. A parallel multiplier was created using the Xilinx compiler. 4-bit,

8-bit, and 16-bit multipliers were created for both.

Sign Extension

Shift Register Shift Register

Adder/Subtractor

Register

A B

Product

Figure 8: Data path for signed 2’s complement serial multiplier

 12

Figure10: Table of area used and delay from serial and parallel multipliers.

 A parallel multiplier was used because it would, in fact, fit on the chip. To

increase the speed even further a modified Booth’s Algorithm was used. Booth’s

algorithm (Figure 11) increases the speed by cutting the number of necessary

 4-bit 8-bit 16-bit
 Area Delay Area Delay Area Delay

Serial Multiplier 7.14% 96.88ns 13.52% 210.8ns 24.49% 503.68ns

Parallel Multiplier 10.71% 27.41ns 17.81% 38.76ns 65.40% 72.06ns

16-bit Adder

16-bit Adder

16-bit Adder

16-bit Adder

A (16-bits)
0000…

000…S(0)

S(1)

…….

B(0)

B(1)

B(2)

B(15)

Prod(31 downto 16) Prod(15)…Prod(0)
Figure 9: Data path for signed 2’s complement parallel multiplier

 13

Figure 11: Modified Booth’s Algorithm

additions in half. The 16-bit Modified Booth’s Multiplier had decreased the delay

of 60 ns.

 One problem that arose with the multiplier was that it would occasionally

produce an extra sign bit. It was discovered that this problem only arose when

multiplier two identical numbers. Checking for that specific case and adjusting

the product accordingly corrected this dilemma.

 As with the adder, the design of the multiplier differed for the VLSI portion

of the project. Because of time constraints and complexity issues, a 4-bit by 4-bit

cellular multiplier was designed instead of a 16-bit by 16-bit Booth’s modified

multiplier. Also, a cellular approach was taken when designing the CMOS

multiplier as well. A single multiplier cell (Figure 12) was initially designed and

tested before the entire multiplier was built. Once functioning correctly, this cell

would be arranged in an array to form a 4-bit by 4-bit multiplier, much like the

approach taken with the adder. After designing and testing the multiplier cell

logically, the equivalent CMOS circuit (Figure A5) was drawn in L-Edit and then

simulated in PSpice. Comparing the two simulations produced identical results,

 Bit Operation
Yi+1 Yi Y

0 0 0 add zero
0 0 1 add X
0 1 0 add X
0 1 1 add 2X
1 0 0 subtract 2X
1 0 1 Subtract X
1 1 0 Subtract X
1 1 1 Subtract 0

 14

Figure 12: Logic schematic and block diagram of the multiplier
cell used in the design of the 8-bit multiplier. The L-Edit
schematic is show in Figure A5.

and the full multiplier was ready to be designed.

Unlike the adder, a simple cascaded design could not be used in the case

of the multiplier. The cellular array shown in Figure 13 displays the

interconnections of the multiplier cells that form the full circuit. In all, sixteen cells

made up this design, and the total number of transistors exceeded one thousand.

To test the circuit, five different simulations tested the sixteen different

combinations for inputs a0 through a3 which were multiplied by zero, one, three,

seven, and fifteen. The products in simulation were compared to answers from a

calculator; the conclusions from these results showed that the multiplier

functioned correctly.

However, this multiplier only computed positive numbers, so circuitry

needed to be added to the input and output stages so that it would compute

negative numbers correctly. The input complement blocks must take a two’s

complement number and convert it to the corresponding positive number before

Multiplier
Cell

Cin

 Sout Ai

 Cout

Bi Bi

 Sin Ai

 15

Figure 13: Cellular design of the 4-bit by 4-bit multiplier
utilizing the multiplier cell in Figure 5. The VLSI multiplier
design is shown in Figure A6.

being sent to the multiplier. The corresponding output complement block would

then recognize that the product is either positive or negative based on the inputs

and adjust the output value accordingly. To accomplish this, the ripple-carry

adder discussed previously and a 2-to-1 multiplexer were added to the input and

output stages of the multiplier (Figure 14). To convert to a positive number, the

two’s complement negative number must undergo bit wise negation; then, one is

added to the negated value. The multiplexer uses the sign bit to select the

appropriate value to send into the multiplier. At the output, the select bit looks at

a3

p7

a1

b0

b1

b2

b3

a0

p6 p5 p4 p3 p2 p1 p0

a2

 16

Figure 14: Block diagram of the input/output adjustment
circuitry for the two least significant bits of the input or
output of the multiplier.

the sign bits of both inputs and the carry-out of the most significant bit of the

ripple carry adder used to convert the two’s complement number. Based on

these signals, the adjustment circuitry selects the appropriate positive number to

send through the multiplier. Likewise, the output adjustment circuitry contains

circuitry that selects the appropriate value to send out of the multiplier. However,

the select bit at this stage looks at the sign bits of both inputs and the carry out of

the most significant bit of the two’s complement ripple-carry adder. Based on

these three signals, the multiplexer selects the appropriate values to send out of

the multiplier.

 In addition, there were two special cases that needed to corrected. This

occurred when the input was (10000)2, or –15 (the least negative input), and

when the output was (100000000)2, or –255 (the least negative output). To

adjust for these instances, another stage of multiplexers was added to the

a
 sum
b
 cout
cin

o

D0
 Q
D1

Select

a
 sum
b
 cout
cin

o

D0
 Q
D1

Select

‘1’

‘0’

‘0’

Sign
Bit

 17

adjustment circuitry that specifically looked for these cases. The only time this

occurred was when the sign bit of the input or output and the carry-out bit of the

two-complement adjustment adder were both HIGH (or 5V). On these

occasions, the adjustment circuitry would recognize these numbers and send the

correct numbers into or out of the multiplier. These circuits were designed and

tested separately. Once both the input and output adjustment circuits were

working correctly, their cells were instantiated into the multiplier layout, and the

correct connections were made between the appropriate cells. Once connected,

the entire layout was checked for design errors, and the circuit file was then

extracted and simulated. The results showed that the adjustment circuitry

functioned correctly, and the multiplier now produced the correct two’s

complement numbers when specific inputs were given. (The simulations for both

the unsigned multiplier and the multiplier with the adjustment circuitry can be

found in Appendix Figures A7 and A8.)

Data Management

 This block of the processor handles all of the filter coefficients and

previously stored values from the processor. Looking at the equations for the

digital filter, there are five coefficients that need to be stored in the data block: b0,

b1, b2, a1, and a2. Also, the values ω(n-1) and ω(n-2) are values that are delayed

through the system. These values need to be stored in memory in this data

management block so they can be delivered to the adder and multiplier stages at

the correct time. This will allow the processor to correctly compute the new

output values of the signal. Therefore, this part of memory will be set up in a

 18

“shift-and-rotate” fashion so that when a new value enters the system, the old

values will be rotated out and the delayed values can be stored correctly. This

flow chart for this data management block is shown in Figure 15.

Figure 15: Block diagram showing consecutive steps in the
data management.

 The same general flow was used for both the VLSI and VHDL designs.

Seven cycles were used for the entire design in VHDL. The first cycle is used to

trigger an analog-to-digital (A/D) converter. A temporary register was also

created to store the data until the next cycle. The next five cycles load the data

to the multiplier and adder. For each of these cycles the product from the

multiplier is fed into adder. For this reason the clock that controls the cycles

must be set with a period long enough for the product to be calculated by the

multiplier and then summed by the adder. The last two cycles are used to shift

the data to be used with the next input. The flow for this process can be seen in

Figure 16.

Multiplier

Adder/Subtractor

Memory
Management

Multiplier

Memory
Management

Adder/Subtractor

x(n)

-a1

 w(n-1)

x(n)-a1*w(n-1)

x(n)-a1*w(n-1)

-a2

 w(n-2)

 19

Figure 16: Table showing the data management flow
for the VHDL code.

 The entire VHDL design has been completed and tested successfully.

The next step will be to flash this design to the FPGA expansion board. The

necessary adjustments and code for this process has been completed, but at this

point there has not been an opportunity to verify that the design does in fact work

on the board.

 More cycles were used for the VLSI design than for the VHDL design.

The concurrent and parallel nature of the VHDL design required fewer cycles

than the eleven cycles (Figure 17)used in the CMOS processor design. Also, 5-

bit registers had to be designed in order to store previously calculated values as

well as the different equation coefficients. Finally, a sequential clock circuit

consisting of flip-flops was designed to control the flow of data as well as the

order in which operations were performed.

The first thing accomplished was the design of the registers. These consisted of

five d-type latches where the data flow was controlled by a clock signal. These

Cycle Mul1 Mul2 Add
000 This cycle is used to trigger the A/D convertor
001 a1 W(n-1) X(n)
010 a2 W(n-2) Temp Reg
011 b2 W(n-2) 0
100 b1 W(n-1) Temp Reg
101 b0 W(n) Temp Reg W(n-1) =>W(n-2)
110 W(n) => W(n-1)

 20

Cycle Mul1 Mul2 Add1 Add2 Product Sum

1 a1 ω(n-1) Rmul

2 x(n) Rmul Radd

3 a2 ω(n-2) Rmul

4 Radd Rmul ω(n)

5 b0 ω(n) Rtemp

6 b1 ω(n-1) Rmul

7 Rtemp Rmul Radd

8 b2 ω(n-2) Rmul

9 Radd Rmul y(n)

10 ω(n-1) -> ω(n-2)

11 ω(n) -> ω(n-1)

Figure 17: Table of cycles for the VLSI processor.

latches consisted of simple NAND gates shown in Figure 184. The equivalent

CMOS circuit was constructed and simulated. It was found that whenever the

clock signal was HIGH, the output followed the input, and when the clock signal

was LOW, the output remained at the last input before the next clock transition.

Therefore, these registers would be positively triggered latches.

 After the registers, the next goal to accomplish was the sequential clock

circuitry that would control the flow of data and processes in the processor. This

design produced a sequence of eleven clock pulses that controlled various

registers and circuits throughout the processor. To accomplish this, twelve d-

type flip-flops were cascaded to produce a delayed signal throughout the circuit.

To start the sequence, an input pulse must be sent to the first flip-flop, and to

4 The design for this latch was taken from the website http://www.play-hookey.com.

 21

Figure 18: Logical design of the d-type latch used to form the
5-bit registers used to store coefficients and previous values.

continue the sequence, the output of the final flip-flop must be sent to the first

one. Because of this, a 2-input OR gate was required at the input of the circuit,

as shown in Figure 19. The different pulses were then taken from the output of

the appropriate flip-flop.

Figure 19: Logical design of the sequential circuit used
to control the processes and flow of data in the
processor.

 To implement this design in VLSI, the filp-flop needed to be designed first.

For this, a circuit consisting of NOR gates, seen in Figure 20, was used to create

the flip-flop. Once this design was simulated, the overall sequential circuit was

assembled according to the logical diagram in Figure 19 and simulated. The

results showed that the correct clock pulses were produced at the correct times

 22

according to the clock input. (The VLSI design and simulations can be found in

Figures A9 and A10.)

Figure 20: Design of a d-type flip-flop using NOR gates5.

 With both the registers and sequence circuit designed, the VLSI processor

(Figure A11) could be connected together. The correct cells were instantiated

into one file where the correct connections were made between all circuits

(adder, multiplier, registers, and sequential clock circuits). The final design of the

processor can be found in the Appendix. All results from this design will be

discussed in the next section.

Results and Conclusions

 The VHDL processor was successfully tested using Modelsim. The

comparison of the Impulse Response of a low-pass filter simulated in Matlab and

the same filter implemented on the processor can be seen in Figure 21.

 The final delay of the processor was 648 ns, or in other words the speed

of the processor was 1.5 MHz. This is ample speed for most applications. Using

 23

higher-ended FPGA’s can further increase the speed of the processor.

 When programming the FPGA board, problems were encountered. The

primary trouble was with the internal clock of the FPGA. The clock would

Figure 21: Impulse Response of a low-pass filter
implemented using Matlab and the DSP.

not change from its 20 ns period. This is far too fast for the processor. The

cycles would change before any information could be processed causing the

output to always be zero. The only time results could be seen was when the

momentary push-button switch was used. Unfortunately this switch in not

debounced, which caused the data to degrade over time as data would be lost

when the cycles were run too fast while the switch was bouncing.

Improvements that could be made on the VHDL processor would be to

use a FPGA with a higher gate count and better internal clock. With a higher

gate count, creating parallel processors can be used to design higher order

5 This design for the flip flop was taken from the website http://www.play-hookey.com

Matlab DSP
0.905 0.905

-0.7331 -0.733
0.5938 0.594
-0.481 -0.481
0.3896 0.3895

-0.3156 -0.3156
0.2556 0.2555
-0.207 -0.2071
0.1677 0.1676

-0.1358 -0.1359
0.11 0.11

-0.0891 -0.0891

 24

filters. This would improve the ability of the processor while keeping the speed

high.

 For the CMOS processor in L-Edit, no overall simulations could be run.

However, one problem did occur when investigating the final design of the

processor. While looking at the adder simulations, it was found that certain

numbers were adding incorrectly. For example, when one was added to fifteen,

the adder produced a sum of negative sixteen. Later, the reason for this problem

was discovered; no overflow circuitry was added to the adder. This circuit would

be very similar to the adjustment circuitry added to the multiplier. However, time

constraints did not allow this design to be completed. Further work on this

processor would be a design of this overflow circuitry that would adjust the sum

of the adder in cases where an erroneous numbers were generated. Also, more

investigation could be done regarding the speed of this processor. This

parameter is based upon the internal capacitances at the transistor level of the

circuit. To determine this, information must be gathered from fabrication labs as

well as the design constraints in the layout of the processor itself.

 25

References

“Digital Logic,” Play-Hookey Website. http://www.play-hookey.com. 2003.

Manolakis, Dimitris G. and John G. Proakis. Digital Signal Processing:

Principles, Algorithms, and Applications. Prentice Hall, Upper Saddle

River, NJ: 1996.

Uyemura, John P. Physical Design of CMOS Integrated Circuits Using L-Edit.

PWS Publishing, Boston, MA: 1995.

 26

Appendix A: L-Edit Circuits and Simulations

Figure A1: CMOS layout of the adder cell used to create the
5-bit ripple-carry adder used in the VLSI processor.

Figure A2: CMOS layout of the 5-bit ripple-carry adder created
though cell instantiation used in the VLSI processor.

 27

Figure A3: PSpice simulation of the CMOS 5-bit ripple-carry
adder where 32 different combinations for a0-a3 are added with
zero.

Figure A4: PSpice simulation of the CMOS 5-bit ripple-carry
adder where 32 different combinations for a0-a3 are added with
-1.

P0

P1

P2

P3

P4

P2

P3

P4

P1

P0

 28

Figure A5: L-Edit layout of the CMOS multiplier cell.

Figure A6: L-Edit layout of the 4-bit by 4-bit multiplier put
together by instantiated multiplier cells.

 29

Figure A7: PSpice simulation for the multiplier where 16
different combinations for a0-a3 are multiplied by 1.

Figure A8: PSpice simulation for the multiplier where 16
different combinations for a0-a3 are multiplied by -1.

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

 30

Figure A9: L-Edit layout of the sequential clock-controller circuit
using 12 d-type flip-flops.

Figure A10: PSpice simulation showing the 11
different clock pulses used to control data flow
and processes in the VLSI processor.

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

CS9

CS10

CS11

 31

Figure A11: Final CMOS layout of the VLSI digital
signal processor created in L-Edit Pro.

 32

Appendix B: VHDL Code for the Digital Signal Processor

Easy Adder
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity add16 is
port(
 a : in std_logic_vector(15 downto 0);
 b : in std_logic_vector(15 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector(15 downto 0);
 cout : out std_logic);
end entity add16;

architecture circuits of add16 is
signal temp_sum : std_logic_vector(16 downto 0);
begin

 sum<=temp_sum(15 downto 0);
 cout<=temp_sum(16);--carry out

process(a,b,cin)--carry adjust
begin
if (cin='0') then
 temp_sum<=('0' & a)+('0' & b);
 else
 temp_sum<=('0'& a)+('0' & b) + "00000000000000001";
end if;
end process;

end architecture circuits;

 33

Carry Look Ahead Adder

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity add16 is
port(
 a : in std_logic_vector(15 downto 0);
 b : in std_logic_vector(15 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector(15 downto 0);
 cout : out std_logic);
end entity add16;

architecture circuits of add16 is
component fcadd3
 port(c_in : in std_logic;
 a : in std_logic_vector(2 downto 0);
 b : in std_logic_vector(2 downto 0);
 sum : out std_logic_vector(2 downto 0);
 e : out std_logic;
 r : out std_logic);
end component;

component fcadd2
 port(c_in : in std_logic;
 a : in std_logic_vector(1 downto 0);
 b : in std_logic_vector(1 downto 0);
 sum : out std_logic_vector(1 downto 0);
 e : out std_logic;
 r : out std_logic);
end component;

signal c3,c6,c9,c12,c15 : std_logic;
--attribute synthesis_off of c3,c6,c9,c12,c15 : signal is true;
signal e0,e1,e2,e3,e4,e5 : std_logic;
--attribute synthesis_off of e0,e1,e2,e3,e4,e5 : signal is true;
signal r0,r1,r2,r3,r4,r5 : std_logic;
--attribute synthesis_off of r0,r1,r2,r3,r4,r5 : signal is true;
signal vss : std_logic:='0';
begin

u1: fcadd3 port map (cin,a(2 downto 0),b(2 downto 0),sum(2 downto
0),e0,r0);
u2: fcadd3 port map (c3,a(5 downto 3),b(5 downto 3),sum(5 downto
3),e1,r1);
u3: fcadd3 port map (c6,a(8 downto 6),b(8 downto 6),sum(8 downto
6),e2,r2);
u4: fcadd3 port map (c9,a(11 downto 9),b(11 downto 9),sum(11 downto
9),e3,r3);
u5: fcadd2 port map (c12, a(13 downto 12),b(13 downto 12),sum(13
downto 12),e4,r4);
u6: fcadd2 port map (c15, a(15 downto 14),b(15 downto 14),sum(15
downto 14),e5,r5);

 34

c3<=e0 or (r0 and cin);
c6<=e1 or (r1 and e0) or (r1 and r0 and cin);
c9<=e2 or (r2 and e1) or (r2 and r1 and e0) or (r2 and r1 and r0 and
cin);
c12<=e3 or (r3 and e2) or (r3 and r2 and e1) or (r3 and r2 and r1 and
e0) or (r3 and r2 and r1 and r0 and cin);
c15<=e4 or (r4 and e3) or (r4 and r3 and e2) or (r4 and r3 and r2 and
e1) or (r4 and r3 and r2 and r1 and e0) or
 (r4 and r3 and r2 and r1 and r0 and cin);
cout<=e5 or (r5 and e4) or (r5 and r4 and e3) or (r5 and r4 and r3 and
e2) or (r5 and r4 and r3 and r2 and e1) or
 (r5 and r4 and r3 and r2 and r1 and e0) or (r5 and r4 and r3
and r2 and r1 and r0 and cin);

end circuits;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity fcadd2 is
 port(c_in : in std_logic;
 a : in std_logic_vector(1 downto 0);
 b : in std_logic_vector(1 downto 0);
 sum : out std_logic_vector(1 downto 0);
 e : out std_logic;
 r : out std_logic);
end fcadd2;

architecture archfcadd2 of fcadd2 is
begin
 sum(0)<=a(0) xor b(0) xor c_in;
 sum(1)<=a(1) xor b(1) xor ((a(0) and b(0)) or (a(0) and c_in) or
(b(0) and c_in));
 e<=(a(1) and b(1)) or ((a(1) or b(1)) and (a(0) and b(0)));
end archfcadd2;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity fcadd3 is
 port(c_in : in std_logic;
 a : in std_logic_vector(2 downto 0);
 b : in std_logic_vector(2 downto 0);
 sum : out std_logic_vector(2 downto 0);
 e : out std_logic;
 r : out std_logic);
end fcadd3;

architecture archfcadd3 of fcadd3 is
signal c1,c2: std_logic;
begin

 35

 sum(0)<=a(0) xor b(0) xor c_in;
 sum(1)<=a(1) xor b(1) xor c_in;
 sum(2)<=a(2) xor b(2) xor c_in;
 c1<=(a(0) and b(0)) or ((a(0) or b(0)) and c_in);
 c2<=(a(1) and b(1)) or ((a(1) or b(1)) and (a(0) and b(0))) or
((a(1) or b(1)) and (a(0) or b(0)) and c_in);
 e<=(a(2) and b(2)) or ((a(2) or b(2)) and (a(1) and b(1))) or
((a(2) or b(2)) and (a(1) or b(1)) and (a(0) or b(0)));
 r<=(a(2) or b(2)) and (a(1) or b(1)) and (a(0) or b(0));
end archfcadd3;

 36

Ripple Carry Adder

Library IEEE;
use IEEE.std_logic_1164.all;

entity add16 is
port(
 a : in std_logic_vector(15 downto 0);
 b : in std_logic_vector(15 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector(15 downto 0);
 cout : out std_logic);
end entity add16;

architecture circuits of add16 is
signal c : std_logic_vector (0 to 14); --internal carry signals
begin
 a0: entity work.pfa port map(a(0),b(0),cin,sum(0),c(0));
 stage: for i in 1 to 14 generate
 as: entity work.pfa port map(a(i),b(i),c(i-1),sum(i),c(i));
 end generate stage;
 a15: entity work.pfa port map(a(15),b(15),c(14),sum(15),cout);
end architecture circuits;

 37

Shift Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

 entity mul4x4 is
 port(multiplier: in std_logic_vector(7 downto 0);
 multiplicand: in std_logic_vector(7 downto 0);
 product: out std_logic_vector(15 downto 0);
 clock: in std_logic);
 end mul4x4;

 architecture jrb of mul4x4 is

 signal mdreg, mrreg : std_logic_vector(7 downto 0);
 signal adderin : std_logic_vector(7 downto 0);
 signal adderout : std_logic_vector(8 downto 0);
 signal ppreg : std_logic_vector(16 downto 0);
 signal clr_mr ,load_mr ,shift_mr: std_logic;
 signal clr_md ,load_md : std_logic;
 signal clr_pp ,load_pp ,shift_pp: std_logic;

 signal mulstate : natural range 0 to 16;

 begin

 registers: process begin

 if rising_edge(clock) then

 --register to hold multiplicand during multiplication
 if clr_md = '1' then
 mdreg <= (others => '0');
 elsif load_md = '1' then
 mdreg <= multiplicand;
 else
 null;
 end if;
 end if;

 --register/shifter to hold multiplier
 if clr_mr = '1' then
 mrreg <= (others => '0');
 elsif load_mr = '1' then
 mrreg <= multiplier;
 elsif shift_mr = '1' then
 mrreg<='0' & mrreg(7 downto 1);
 else
 null;
 end if;
 --register/shifter accumulates partial product values
 if clr_pp = '1' then
 ppreg <= (others => '0');

 38

 elsif load_pp = '1' then
 ppreg(16 downto 8) <= adderout; --add to top half
 elsif shift_pp = '1' then
 ppreg<=‘0’ & ppreg(16 downto 1);
 else
 null;
 end if;

 end process;

--adder
if (mrreg(0)=1) then

 adderin <= mdreg;
 adderout <= ('0' & ppreg(15 downto 8)) + ('0' & adderin);
--connect ppreg to product output
 product <= ppreg(15 downto 0);
 else (others => 0);

end if;

 mul_state: process begin
 wait until rising_edge(clock);
 if mulstate < 16 then mulstate <= mulstate + 1;
 else mulstate <= 0;
 end if;
 end process;

 --assign control signal values based on state
 state_decoder: process(mulstate)
 begin
 --assign defaults, all registers refresh
 clr_mr <= '0';
 load_mr <= '0';
 shift_mr <= '0';
 clr_md <= '0';
 load_md <= '0';
 clr_pp <= '0';
 load_pp <= '0';
 shift_pp <= '0';
 if mulstate = 0 then
 load_mr <= '1';
 load_md <= '1';
 clr_pp <= '1';
 elsif mulstate mod 2 = 0 then --mulstate = 2,4,6,8
 shift_mr <= '1';
 shift_pp <= '1';
 else --mulstate = 1,3,5,7......
 load_pp <= '1';
 end if;
 end process state_decoder;

end jrb;

 39

Fold Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity mult is
 port(
 clk : in std_logic;
 reset : in std_logic;
 a : in std_logic_vector(15 downto 0);
 b : in std_logic_vector(15 downto 0);
 prod : out std_logic_vector(31 downto 0);
 enter : in std_logic);
end mult;

architecture jrb of mult is

component sgnext
 port(
 a : in std_logic_vector(15 downto 0);
 b : out std_logic_vector(31 downto 0));
end component;

signal count : integer range 0 to 16;--counts cycles
signal aext : std_logic_vector(31 downto 0);
signal areg : std_logic_vector(31 downto 0);--register for a
signal breg : std_logic_vector(15 downto 0);--register for b
signal prodreg : std_logic_vector(31 downto 0);--register for
product

begin

U0 : sgnext
 port map(a=>a, b=>aext);

process(clk,reset)
begin
 if (reset='1') then --reset counter and done
 count<= 0;
 elsif (clk'event and clk='1') then
 if (enter='1') then
 count<=1;
 prodreg<=(others =>'0');
 areg<=aext;
 breg<=b;
 elsif(count/=0) then
 if (breg(0)='1')then
 if (count=16) then
 prodreg<=prodreg - areg;
 else prodreg<=(prodreg + areg);
 end if;

 40

 end if;
 if (count=16) then
 count<=0;
 else count<=count+1;
 end if;
 areg<=areg(30 downto 0) & '0';
 breg<='0'& breg(15 downto 1);
 end if;
 end if;
end process;

prod<=prodreg;

end jrb;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity sgnext is
 port(
 a : in std_logic_vector(3 downto 0);
 b : out std_logic_vector(7 downto 0));
end sgnext;

architecture jrb of sgnext is
begin

gen1: for i in natural range 3 downto 0 generate
 b(i)<=a(i);
end generate;

gen2: for i in natural range 7 downto 4 generate
 b(i)<=a(3);
end generate;
end jrb;

 41

Booth Parallel Multiplier

library IEEE;
use IEEE.std_logic_1164.all;

entity mul16 is --16 by 16 two's comp multiplier
port(
 a : in std_logic_vector(15 downto 0);
 b : in std_logic_vector(15 downto 0);
 p : out std_logic_vector(31 downto 0));
end entity mul16;

architecture circuits of mul16 is
signal zer : std_logic_vector(15 downto 0) :=x"0000"; --zeros
signal mul0 : std_logic_vector(2 downto 0);
subtype word is std_logic_vector(15 downto 0);
type ary is array (0 to 7) of word;
signal s : ary;
begin
 mul0<=a(1 downto 0) & '0';
 a0: entity work.booth port map(mul0,b,zer,s(0),p(1 downto 0));
 a1: entity work.booth port map(a(3 downto 1),b,s(0),s(1),p(3
downto 2));
 a2: entity work.booth port map(a(5 downto 3),b,s(1),s(2),p(5
downto 4));
 a3: entity work.booth port map(a(7 downto 5),b,s(2),s(3),p(7
downto 6));
 a4: entity work.booth port map(a(9 downto 7),b,s(3),s(4),p(9
downto 8));
 a5: entity work.booth port map(a(11 downto 9),b,s(4),s(5),p(11
downto 10));
 a6: entity work.booth port map(a(13 downto 11),b,s(5),s(6),p(13
downto 12));
 a7: entity work.booth port map(a(15 downto 13),b,s(6),p(31 downto
16),p(15 downto 14));
end architecture circuits;

library IEEE;
use IEEE.std_logic_1164.all;

entity booth is --special adder for signed mult
port(
 a : in std_logic_vector(2 downto 0); --booth multiplier
 b : in std_logic_vector(15 downto 0); --multiplicand
 sum_in : in std_logic_vector(15 downto 0);
 sum_out : out std_logic_vector(15 downto 0);
 prod : out std_logic_vector(1 downto 0));
end entity booth;

architecture circuits of booth is
subtype word is std_logic_vector(15 downto 0);
signal bb : word;
signal psum : word;
signal b_bar: word;

 42

signal two_b : word;
signal two_b_bar : word;
signal cout : std_logic;
signal cin : std_logic;
signal topbit : std_logic;
signal topout : std_logic;
signal nc1 : std_logic;

begin
 two_b<=b(14 downto 0)&'0';
 b_bar<=not b;
 two_b_bar<=b_bar(14 downto 0)&'0';
 bb<=b when a="001" or a="010" --5 intput multiplexor
 else two_b when a="011"
 else two_b_bar when a="100"
 else b_bar when a="101" or a="110"
 else x"0000";
 cin<='1' when a="001" or a="101" or a="110"
 else '0';
 topbit<=b(15) when a="001" or a="010" or a="011"
 else b_bar(15) when a="100" or a="101" or a="110"
 else '0';
a1:entity work.add16 port map(sum_in,bb,cin,psum,cout);
a2:entity work.pfa port map(sum_in(15),topbit,cout,topout,nc1);
 sum_out(13 downto 0)<=psum(15 downto 2);
 sum_out(15)<=topout;
 sum_out(14)<=topout;
 prod<=psum(1 downto 0);
end architecture circuits;

Library IEEE;
use IEEE.std_logic_1164.all;

entity pfa is
port(
 a : in std_logic;
 b : in std_logic;
 cin : in std_logic;
 s : out std_logic;
 cout : out std_logic);
end entity pfa;

architecture circuits of pfa is
begin
 s<=a xor b xor cin;
 cout<=(a and b) or (a and cin) or (b and cin);
end architecture circuits;

 43

Data Management

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity data_manage is --data management for DSP Processor
port(
 clk : in std_logic;
 X_in : in std_logic_vector(15 downto 0);
 count_out : out std_logic_vector(2 downto 0);--used to check
the counting cycles to see if clock is working

 Y_out : out std_logic_vector(15 downto 0));
end entity data_manage;

architecture circuits of data_manage is
signal count : std_logic_vector(2 downto 0) := "000"; --counter for mux
signal a1 : std_logic_vector(15 downto 0) :="0000000000000000"; --a1
coefficient
signal a2 : std_logic_vector(15 downto 0) :="1001100001010010"; --a2
coefficient
signal b0 : std_logic_vector(15 downto 0) :="0000000000000000"; --b0
coefficent
signal b1 : std_logic_vector(15 downto 0) :="0111001111010111"; --b1
coefficent
signal b2 : std_logic_vector(15 downto 0) :="0111001111010111"; --b2
coefficent
signal temp_reg : std_logic_vector(15 downto 0); --temp register to
store summed values
signal wn : std_logic_vector(15 downto 0):="0000000000000000"; --Wn
register
signal wn_1 : std_logic_vector(15 downto 0):="0000000000000000"; --Wn-1
register
signal wn_2 : std_logic_vector(15 downto 0):="0000000000000000"; --Wn-2
register
signal mul1 : std_logic_vector(15 downto 0); --signals sent to
multiplier
signal mul2 : std_logic_vector(15 downto 0);
signal add : std_logic_vector(15 downto 0);
signal product : std_logic_vector(31 downto 0);--signal from
multiplier
signal temp: std_logic_vector(16 downto 0);
signal tempcarry: std_logic_vector(15 downto 0);
begin
U0: entity work.mul16 port map(mul1,mul2,product);

count_out<=count;

Clock: process(clk)
begin
 if rising_edge (clk) then

 44

 if (count/="110") then
 count<=count+"001";
 else count<="000"; -- resets count
 end if;
 end if;
 end process;

Mux: process(count)
begin
 if (count="001") then
 mul1<=a1;
 mul2<=wn_1;
 add<=x_in;
 elsif (count="010") then
 mul1<=a2;
 mul2<=wn_2;
 add<=temp_reg;
 elsif (count="011") then
 wn<=temp_reg;--stores wn
 mul1<=b2;
 mul2<=wn_2;
 add<=x"0000";
 elsif (count="100") then
 mul1<=b1;
 mul2<=wn_1;
 add<=temp_reg;
 elsif (count="101") then
 mul1<=b0;
 mul2<=wn;
 add<=temp_reg;
 wn_2<=wn_1;
 elsif (count="110") then
-- y_out<=temp_reg;
 Y_out<=(not temp_reg(15)) & temp_reg(14 downto 0);
 Wn_1<=wn; --stores wn to wn-1
 end if;
end process;

adderprocess:process (clk)--adder process used to ensure it doesn't add
until mult is done
begin --and also
used to correct the extra sign bit problem if mul1 and mul2 are the same
 if falling_edge(clk) then
 if (mul1=mul2) then
 temp<=('0' & add)+('0' & product(29 downto 14));

 tempcarry<=('0' & add(14 downto 0))+('0' & product(28
downto 14));
 else
 temp<=('0' & add)+('0' & product(30 downto 15));

 tempcarry<=('0' & add(14 downto 0))+('0' & product(29
downto 15));

 end if;
 end if;

 45

end process adderprocess;

processcorrect:process(temp)--process used to correct overflow prob
begin
 if (temp(16)<tempcarry(15)) then
 temp_reg<="0111111111111111";--sets to highest positive
 elsif (temp(16)>tempcarry(15)) then
 temp_reg<="1000000000000000";--sets to lowest negative

 else
 temp_reg<=temp(15 downto 0);
 end if;
end process processcorrect;

end architecture circuits;

 46

Expansion Board Code

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

entity expansion is
port(
 clk1 : in std_logic; --clock for dsp
-- clk2 : in std_logic; --clock for 74LS139
 X_in : in std_logic_vector(9 downto 0);
 count_out : out std_logic_vector(1 downto 0); --output for
74ls139
 Dec_out : out std_logic_vector(3 downto 0)); --output to
display driver
 constant limit : integer := 300;
end entity expansion;

architecture circuits of expansion is
signal count : std_logic_vector(1 downto 0) := "00"; --counter
for 74ls139
signal countclk : integer := 0;
signal y_out : std_logic_vector(15 downto 0); --output from dsp
signal dec_temp : std_logic_vector(3 downto 0); --temp reg for inside
process
signal X_adj : std_logic_vector(15 downto 0); --used to make
X_in 16 bits
signal clkadj : std_logic :='0'; ---used to slow down the 20ns internal
clock
signal clkadjtemp : std_logic :='0';
begin
 X_adj<=(X_in & "000000"); --add 6 0's to right of X_in
 clkadj<=clkadjtemp;
U0: entity work.data_manage port map (clkadj, X_adj, y_out);

 count_out<=count;
 Dec_out<=dec_temp;

process(clk1)
begin
if (clk1='1' and clk1'event) then
 if countclk<limit then
 countclk <= countclk+1;
 elsif countclk=limit then
 countclk<=0;
 clkadjtemp<=not clkadjtemp;
 end if;
end if;

end process;

 47

process(clk1)
begin
 if rising_edge(clk1) then
 if (count="11") then
 count<= "00";
 else count<=count + "01";
 end if;
 end if;
end process;

process(count) --mux for display decoder
begin
 if (count="00") then
 dec_temp<=Y_out(15 downto 12);
 elsif (count="01") then
 dec_temp<=Y_out(7 downto 4);
 elsif (count="10") then
 dec_temp<=Y_out(11 downto 8);
 elsif (count="11") then
 dec_temp<=Y_out(3 downto 0);
 end if;
end process;

end architecture circuits;

