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Abstract 

 This project deals with the design and implementation of a general-purpose signal 

processor using digital technology and design, namely VHDL, FPGA (Field 

Programmable Gate Arrays), and VLSI (Very Large Scale Integration). This processor 

consists of a multiplier and adder, a digital filter, and a “shift-and-rotate” type of data 

management.  Once all stages are completed, the processor will be flashed to a Xilinx 

FPGA board for testing and demonstration. 
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Introduction 

 In the world today, the digital product industry is ever growing, and the 

development of digitally based products is rising.  Various industries such as 

audio, video, and cellular industry rely heavily on digital technology.  A great part 

of this deals with digital signal processing.  This aspect in engineering has gained 

increasing interest, especially with much of the world now turning to wireless 

technology and its applications to keep businesses and industries connected.  

The world of digital technology is certainly one that will be present for many years 

to come. 

 Digital signal processing is an area of electrical engineering that has 

rapidly grown in the past 30 years.  Advances in digital hardware and digital 

computers have spurred this growth.  Current integrated circuit technology, 

namely very-large-scale integration (VLSI), made it possible to develop smaller, 

faster, and cheaper special-purpose digital processing.  These circuits made it 

possible to construct digital systems capable of performing the complex digital 

signal processing tasks that are usually too difficult or too expensive to be 

performed by analog circuitry.  Today, many of the functions usually performed 

by analog means are now realized by less expensive and more reliable digital 

hardware1. 

 The purpose of this project was to design and construct two high-speed, 

application-specific digital signal processors (DSP’s).  One processor was 

developed by Jeremy Barsten utilizing Very High Speed Integrated Circuit 

Hardware Descriptive Language (VHDL) to be implemented utilizing a Field 
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Programmable Gate Array (FPGA).  Jeremy Stockwell designed the other in 

VLSI, and this design will be sent for fabrication on an ASIC chip.  However, 

because of the complexity of the design, the VLSI-based processor was a scaled 

down version from that done in VHDL. 

Overall Design 

 Digital Signal Processing is the process of manipulating a digital 

input utilizing a transfer function.  This project implemented a second order Direct 

Form II realization of an infinite-impulse response (IIR) filter.   Utilizing this format 

we derived the following transfer function necessary to process the input signal: 

y(n)=b0•w(n) + b1•w(n-1) + b2•w(n-2), where w(n)=x(n) – a1•w(n-1) – a2•w(n-2) 

This simplifies to: 

Y(n)=b0•x(n) + b1•x(n-1) + b2•x(n-2) – a1•y(n-1) – a2•y(n-2) 

The coefficients a1, a2, b0, b1, and b2 can be changed to adapt the processor to 

many different applications.  The block diagram for this Direct Form II 

implementation is shown in Figure 1.  Based on this diagram and the above 

equations, there are four discrete subsystems that must be designed in order to 

realize this processor.  These components are signal converters, a two’s 

complement signed-multiplier, a full adder, and a block of data storage.  A top-

down design approach was implemented so that each component was designed 

and tested individually before being added to the overall system.  Once all the 

components were pieced together, the entire DSP would be tested. 

 

                                                                                                                                                 
1 Information taken from Digital Signal Processing by John G. Proakis and Dimitris G. Manolakis 
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 x(n)         w(n)     b0   y(n) 
 
  
 
       -a1         b1 
 
 
        -a2        b2         w(n-1) 
 
                 w(n-2) 

Figure 1: Direct Form II realization of an IIR Filter 
 
Signal Converters 

 Many of the signals today are analog in nature.  However, analog circuits 

do not provide the reliability and speed of digital circuits.  In order to process a 

signal using a digital circuit, the signal must be converted to a digital one before 

being sent to the processor.  Also, the digital output of the processor must be 

converted back to an analog one before being passed onto other applications.  

Therefore, two signal converters are required at each stage of the processor:  a 

analog-to-digital (A/D) converter at the input stage and a digital-to-analog (D/A) 

at the output stage.  The block design representing this is shown in Figure 2. 

          MSB        MSB 
 
   
Analog                              Analog 
   Input                    Output 
 
 
          LSB        LSB 

Figure 2:  Block diagram showing the connections of   
the A/D and the D/A converter     

 
 The converters chosen for this project are the ones on the FPGA board 

used in this project.  They are part of the circuit board and have already been 
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interfaced with the FPGA2.  These will be utilized instead of setting up external 

circuitry to run the conversions. 

Adder and Multiplier Stages 

 As evident through the transfer function and Figure 1, multiplication and 

addition are the main functions of digital signal processing.  The input values and 

previous output values must be multiplied by certain coefficients, and then these 

products must be summed together.  Also, each of these must be designed so 

that they can process negative two’s compliment values due to the values of the 

coefficients.   

 Adder: VHDL and VLSI Design 

Some differences exist between the design in VHDL and VLSI.  In VHDL, the first 

task was to determine the capabilities of the Xilinx compiler.  To do this a ripple 

carry adder (Figure 3) and a carry look-ahead (Figure 4) adder were created with 

VHDL.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3:  Logical diagram for a 4-bit ripple carry adder. 

 
 
 
 

                                                 
2 The FPGA Exansion board used was developed by Brett Marshal and Mike Parker in a previous project. 
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Figure 4: Logical diagram for a 4-bit carry look-ahead adder 
 

  A carry ripple adder has a delay of 2n+2 gate delays.  To decrease this 

delay a carry look-ahead adder can be created.  This type of adder requires more 

logic, but the speed advantage is significant.  For example, a 16-bit carry ripple 

adder results in 34 gate delays, while a carry look-ahead adder only has 10 gate 

delays.   

To test the Xilinx compiler a simple adder  (a + b = c) was created in 

VHDL.  Then all three adders were simulated and the delays were compared to 

determine what type of adder the compiler created.  The results showed that the 

complier created a carry look-ahead or equivalent adder. 

 
 Carry Look-ahead 

Adder 
Ripple Adder Simple Adder 

Delay Times 11.05ns 22.43ns 11.05ns 
Figure 5:  Table of delay times from CLA, carry ripple, and simple adders 
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To improve the stability and accuracy of the adder, overflow protection 

was also included.  If this was not added and an overflow occurred, then the 

processor would produce erroneous information. 

The design of the adder in VLSI was different than that in VHDL for 

different reasons.  Because of the complexity of the carry-look-ahead adder, a 

simply ripple-carry adder was used in its place.  Not only would design for a 

carry-look-ahead adder consume the most time, but it would also require a large 

amount of chip area.   

A cellular approach was used in the design of the ripple-carry adder.  First, 

a simple one-bit full adder was designed3.  This design, shown in Figure 6, 

consisted of three inputs, two addend bits and carry-in bit, and produced the 

appropriate carry-out bit and sum bit.  This design was first simulated in a logic-

design program before it was built and simulated in VLSI.  Once functioning 

correctly, the appropriate CMOS circuit was built in L-Edit Pro and tested by 

extracting a Spice file.  (The VLSI adder cell schematic is shown in Appendix 

Figure A1.)  Simulation proved that this design did work by following the 

appropriate truth table. 

 

 

 

 

Figure 6:  Design of a full-adder cell used to create the  
ripple-carry adder in VLSI.     

                                                 
3 Circuit design taken from Physical Design of CMOS Integrated Circuits Using L-Edit by John P. 
Uyemura. 
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 Once the full-adder cell worked correctly, five identical cells could be 

cascaded together to form the full 5-bit adder.  This adder would take two 5-bit 

numbers (where the most significant bit of each was the sign bit) and perform the 

appropriate two’s complement addition.  This adder would then be placed at the 

output of the multiplier stage in the overall design for the processor.  The logical 

design for the 5-bit ripple carry adder is shown in Figure 7.  Because the VLSI 

full-adder cell simulated correctly, five identical cells were cascaded together in 

L-Edit, where the carry-out of each cell was connect to the carry-in of the 

adjacent cell.  When the design was complete, the CMOS design (shown in 

Figure A2) was tested to show that the ripple-carry adder functioned correctly in 

VLSI.  Several simulations showed that the adder worked for the most part, but 

some problems did exit with overflow.  These points will be discussed later in the 

paper. 

 

 

 

 

 

 
 

Figure 7:  Logical design of a 5-bit ripple carry adder  
used to create the CMOS signed adder.    

 
Multiplier: VHDL and VLSI Design 

Many different multipliers were designed in VHDL to determine the best 

ratio of size versus speed.  Two types of multipliers, serial and parallel, were 
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investigated.  A serial multiplier is easier to create and takes less area on the 

FPGA, but the speed is decreased nearly n times for a n-bit multiplier.  A parallel 

multiplier has the advantage of speed and would be utilized if area was of no 

concern.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To conclude what course to take, first, a serial multiplier was created.  

Digital signal processors utilize signed numbers, so a signed multiplier needed to 

be designed.    A parallel multiplier was created using the Xilinx compiler.  4-bit, 

8-bit, and 16-bit multipliers were created for both. 

Sign Extension 

Shift Register Shift Register 

Adder/Subtractor 

Register 

A B 

Product

Figure 8: Data path for signed 2’s complement serial multiplier 
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Figure10:  Table of area used and delay from serial and parallel multipliers. 

 A parallel multiplier was used because it would, in fact, fit on the chip.  To 

increase the speed even further a modified Booth’s Algorithm was used.  Booth’s 

algorithm (Figure 11) increases the speed by cutting the number of necessary 

              4-bit              8-bit            16-bit  
 Area Delay Area Delay Area Delay 

Serial Multiplier 7.14% 96.88ns 13.52% 210.8ns 24.49% 503.68ns 

Parallel Multiplier 10.71% 27.41ns 17.81% 38.76ns 65.40% 72.06ns 

16-bit Adder

16-bit Adder

16-bit Adder

16-bit Adder

A (16-bits)
0000…

000…S(0)

S(1)

…….

B(0) 

B(1) 

B(2) 

B(15) 

Prod(31 downto 16) Prod(15)…Prod(0)
Figure 9: Data path for signed 2’s complement parallel multiplier 
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Figure 11: Modified Booth’s Algorithm 
 
additions in half.  The 16-bit Modified Booth’s Multiplier had decreased the delay 

of 60 ns.  

 One problem that arose with the multiplier was that it would occasionally 

produce an extra sign bit.  It was discovered that this problem only arose when 

multiplier two identical numbers.  Checking for that specific case and adjusting 

the product accordingly corrected this dilemma.   

 As with the adder, the design of the multiplier differed for the VLSI portion 

of the project. Because of time constraints and complexity issues, a 4-bit by 4-bit 

cellular multiplier was designed instead of a 16-bit by 16-bit Booth’s modified 

multiplier.  Also, a cellular approach was taken when designing the CMOS 

multiplier as well.  A single multiplier cell (Figure 12) was initially designed and 

tested before the entire multiplier was built.  Once functioning correctly, this cell 

would be arranged in an array to form a 4-bit by 4-bit multiplier, much like the 

approach taken with the adder.  After designing and testing the multiplier cell 

logically, the equivalent CMOS circuit (Figure A5) was drawn in L-Edit and then 

simulated in PSpice.  Comparing the two simulations produced identical results, 

         Bit Operation
Yi+1 Yi Y

0 0 0 add zero
0 0 1 add X
0 1 0 add X
0 1 1 add 2X
1 0 0 subtract 2X
1 0 1 Subtract X
1 1 0 Subtract X
1 1 1 Subtract 0
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Figure 12:  Logic schematic and block diagram of the multiplier  
cell used in the design of the 8-bit multiplier.  The L-Edit    
schematic is show in Figure A5.      

 
and the full multiplier was ready to be designed. 

Unlike the adder, a simple cascaded design could not be used in the case 

of the multiplier.  The cellular array shown in Figure 13 displays the 

interconnections of the multiplier cells that form the full circuit.  In all, sixteen cells 

made up this design, and the total number of transistors exceeded one thousand.  

To test the circuit, five different simulations tested the sixteen different 

combinations for inputs a0 through a3 which were multiplied by zero, one, three, 

seven, and fifteen.  The products in simulation were compared to answers from a 

calculator; the conclusions from these results showed that the multiplier 

functioned correctly. 

However, this multiplier only computed positive numbers, so circuitry 

needed to be added to the input and output stages so that it would compute 

negative numbers correctly. The input complement blocks must take a two’s 

complement number and convert it to the corresponding positive number before 

Multiplier 
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 Sout   Ai 

 Cout
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 Sin   Ai 
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Figure 13:  Cellular design of the 4-bit by 4-bit multiplier  
utilizing the multiplier cell in Figure 5.  The VLSI multiplier 
design is shown in Figure A6.     

 
being sent to the multiplier.  The corresponding output complement block would 

then recognize that the product is either positive or negative based on the inputs 

and adjust the output value accordingly.  To accomplish this, the ripple-carry 

adder discussed previously and a 2-to-1 multiplexer were added to the input and 

output stages of the multiplier (Figure 14).  To convert to a positive number, the 

two’s complement negative number must undergo bit wise negation; then, one is 

added to the negated value.  The multiplexer uses the sign bit to select the 

appropriate value to send into the multiplier.  At the output, the select bit looks at 
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Figure 14:  Block diagram of the input/output adjustment  
circuitry for the two least significant bits of the input or  
output of the multiplier.      

 
the sign bits of both inputs and the carry-out of the most significant bit of the 

ripple carry adder used to convert the two’s complement number.  Based on 

these signals, the adjustment circuitry selects the appropriate positive number to 

send through the multiplier.  Likewise, the output adjustment circuitry contains 

circuitry that selects the appropriate value to send out of the multiplier.  However, 

the select bit at this stage looks at the sign bits of both inputs and the carry out of 

the most significant bit of the two’s complement ripple-carry adder.  Based on 

these three signals, the multiplexer selects the appropriate values to send out of 

the multiplier. 

 In addition, there were two special cases that needed to corrected.  This 

occurred when the input was (10000)2, or –15 (the least negative input), and 

when the output was (100000000)2, or –255 (the least negative output).  To 

adjust for these instances, another stage of multiplexers was added to the 
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adjustment circuitry that specifically looked for these cases.  The only time this 

occurred was when the sign bit of the input or output and the carry-out bit of the 

two-complement adjustment adder were both HIGH (or 5V).  On these 

occasions, the adjustment circuitry would recognize these numbers and send the 

correct numbers into or out of the multiplier.  These circuits were designed and 

tested separately.  Once both the input and output adjustment circuits were 

working correctly, their cells were instantiated into the multiplier layout, and the 

correct connections were made between the appropriate cells.  Once connected, 

the entire layout was checked for design errors, and the circuit file was then 

extracted and simulated.  The results showed that the adjustment circuitry 

functioned correctly, and the multiplier now produced the correct two’s 

complement numbers when specific inputs were given.  (The simulations for both 

the unsigned multiplier and the multiplier with the adjustment circuitry can be 

found in Appendix Figures A7 and A8.) 

Data Management 

 This block of the processor handles all of the filter coefficients and 

previously stored values from the processor.  Looking at the equations for the 

digital filter, there are five coefficients that need to be stored in the data block: b0, 

b1, b2, a1, and a2.  Also, the values ω(n-1) and ω(n-2) are values that are delayed 

through the system.  These values need to be stored in memory in this data 

management block so they can be delivered to the adder and multiplier stages at 

the correct time.  This will allow the processor to correctly compute the new 

output values of the signal.  Therefore, this part of memory will be set up in a 
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“shift-and-rotate” fashion so that when a new value enters the system, the old 

values will be rotated out and the delayed values can be stored correctly.  This 

flow chart for this data management block is shown in Figure 15.  

 

 

 

 

 

 

 

 
Figure 15:  Block diagram showing consecutive steps in the   
data management.       

 
 The same general flow was used for both the VLSI and VHDL designs.  

Seven cycles were used for the entire design in VHDL.  The first cycle is used to 

trigger an analog-to-digital (A/D) converter. A temporary register was also 

created to store the data until the next cycle.  The next five cycles load the data 

to the multiplier and adder.  For each of these cycles the product from the 

multiplier is fed into adder.  For this reason the clock that controls the cycles 

must be set with a period long enough for the product to be calculated by the 

multiplier and then summed by the adder.   The last two cycles are used to shift 

the data to be used with the next input.  The flow for this process can be seen in 

Figure 16.   
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Figure 16:  Table showing the data management flow  
for the VHDL code.      

 
 The entire VHDL design has been completed and tested successfully.  

The next step will be to flash this design to the FPGA expansion board.  The 

necessary adjustments and code for this process has been completed, but at this 

point there has not been an opportunity to verify that the design does in fact work 

on the board.   

 More cycles were used for the VLSI design than for the VHDL design.  

The concurrent and parallel nature of the VHDL design required fewer cycles 

than the eleven cycles (Figure 17)used in the CMOS processor design.  Also, 5-

bit registers had to be designed in order to store previously calculated values as 

well as the different equation coefficients.  Finally, a sequential clock circuit 

consisting of flip-flops was designed to control the flow of data as well as the 

order in which operations were performed. 

The first thing accomplished was the design of the registers.  These consisted of 

five d-type latches where the data flow was controlled by a clock signal.  These  

 

Cycle Mul1 Mul2 Add
000 This cycle is used to trigger the A/D convertor
001 a1 W(n-1) X(n)
010 a2 W(n-2) Temp Reg
011 b2 W(n-2) 0
100 b1 W(n-1) Temp Reg
101 b0 W(n) Temp Reg W(n-1) =>W(n-2)
110 W(n) => W(n-1)
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Cycle Mul1 Mul2 Add1 Add2 Product Sum 

1 a1 ω(n-1)   Rmul  

2   x(n) Rmul  Radd 

3 a2 ω(n-2)   Rmul  

4   Radd Rmul  ω(n) 

5 b0 ω(n)   Rtemp  

6 b1 ω(n-1)   Rmul  

7   Rtemp Rmul  Radd 

8 b2 ω(n-2)   Rmul  

9   Radd Rmul  y(n) 

10 ω(n-1) -> ω(n-2) 

11 ω(n) -> ω(n-1) 

Figure 17:  Table of cycles for the VLSI processor.  

latches consisted of simple NAND gates shown in Figure 184.  The equivalent 

CMOS circuit was constructed and simulated.  It was found that whenever the 

clock signal was HIGH, the output followed the input, and when the clock signal 

was LOW, the output remained at the last input before the next clock transition.  

Therefore, these registers would be positively triggered latches.  

 After the registers, the next goal to accomplish was the sequential clock 

circuitry that would control the flow of data and processes in the processor.  This 

design produced a sequence of eleven clock pulses that controlled various 

registers and circuits throughout the processor.  To accomplish this, twelve d-

type flip-flops were cascaded to produce a delayed signal throughout the circuit.  

To start the sequence, an input pulse must be sent to the first flip-flop, and to 

                                                 
4 The design for this latch was taken from the website http://www.play-hookey.com. 
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Figure 18:  Logical design of the d-type latch used to form the  
5-bit registers used to store coefficients and previous values.  

 
continue the sequence, the output of the final flip-flop must be sent to the first 

one.  Because of this, a 2-input OR gate was required at the input of the circuit, 

as shown in Figure 19.  The different pulses were then taken from the output of 

the appropriate flip-flop.   

 

 

 

 

 
 

Figure 19:  Logical design of the sequential circuit used  
to control the processes and flow of data in the    
processor.       

 
 To implement this design in VLSI, the filp-flop needed to be designed first.  

For this, a circuit consisting of NOR gates, seen in Figure 20, was used to create 

the flip-flop.  Once this design was simulated, the overall sequential circuit was 

assembled according to the logical diagram in Figure 19 and simulated.  The 

results showed that the correct clock pulses were produced at the correct times 
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according to the clock input.  (The VLSI design and simulations can be found in 

Figures A9 and A10.) 

 
Figure 20:  Design of a d-type flip-flop using NOR gates5.  

 
 With both the registers and sequence circuit designed, the VLSI processor 

(Figure A11) could be connected together.  The correct cells were instantiated 

into one file where the correct connections were made between all circuits 

(adder, multiplier, registers, and sequential clock circuits).  The final design of the 

processor can be found in the Appendix.  All results from this design will be 

discussed in the next section. 

Results and Conclusions 

 The VHDL processor was successfully tested using Modelsim.  The 

comparison of the Impulse Response of a low-pass filter simulated in Matlab and 

the same filter implemented on the processor can be seen in Figure 21. 

 The final delay of the processor was 648 ns, or in other words the speed 

of the processor was 1.5 MHz. This is ample speed for most applications. Using  
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higher-ended FPGA’s can further increase the speed of the processor.   

 When programming the FPGA board, problems were encountered.  The 

primary trouble was with the internal clock of the FPGA.  The clock would 

 

Figure 21:  Impulse Response of a low-pass filter   
implemented using Matlab and the DSP.      

 
not change from its 20 ns period.  This is far too fast for the processor.  The 

cycles would change before any information could be processed causing the 

output to always be zero. The only time results could be seen was when the 

momentary push-button switch was used.  Unfortunately this switch in not 

debounced, which caused the data to degrade over time as data would be lost 

when the cycles were run too fast while the switch was bouncing.  

Improvements that could be made on the VHDL processor would be to 

use a FPGA with a higher gate count and better internal clock.  With a higher 

gate count, creating parallel processors can be used to design higher order 

                                                                                                                                                 
5 This design for the flip flop was taken from the website http://www.play-hookey.com 

Matlab DSP
0.905 0.905

-0.7331 -0.733
0.5938 0.594
-0.481 -0.481
0.3896 0.3895

-0.3156 -0.3156
0.2556 0.2555
-0.207 -0.2071
0.1677 0.1676

-0.1358 -0.1359
0.11 0.11

-0.0891 -0.0891
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filters.  This would improve the ability of the processor while keeping the speed 

high.  

 For the CMOS processor in L-Edit, no overall simulations could be run.  

However, one problem did occur when investigating the final design of the 

processor.  While looking at the adder simulations, it was found that certain 

numbers were adding incorrectly.  For example, when one was added to fifteen, 

the adder produced a sum of negative sixteen.  Later, the reason for this problem 

was discovered; no overflow circuitry was added to the adder.  This circuit would 

be very similar to the adjustment circuitry added to the multiplier.  However, time 

constraints did not allow this design to be completed.  Further work on this 

processor would be a design of this overflow circuitry that would adjust the sum 

of the adder in cases where an erroneous numbers were generated.  Also, more 

investigation could be done regarding the speed of this processor.  This 

parameter is based upon the internal capacitances at the transistor level of the 

circuit.  To determine this, information must be gathered from fabrication labs as 

well as the design constraints in the layout of the processor itself.   
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Appendix A:  L-Edit Circuits and Simulations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1:  CMOS layout of the adder cell used to create the   
5-bit ripple-carry adder used in the VLSI processor.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure A2:  CMOS layout of the 5-bit ripple-carry adder created  
though cell instantiation used in the VLSI processor.   
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Figure A3:  PSpice simulation of the CMOS 5-bit ripple-carry   
adder where 32 different combinations for a0-a3 are added with  
zero.         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4:  PSpice simulation of the CMOS 5-bit ripple-carry  
adder where 32 different combinations for a0-a3 are added with  
-1.         
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Figure A5:  L-Edit layout of the CMOS multiplier cell.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A6:  L-Edit layout of the 4-bit by 4-bit multiplier put  
together by instantiated multiplier cells.     
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Figure A7:  PSpice simulation for the multiplier where 16  
different combinations for a0-a3 are multiplied by 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A8:  PSpice simulation for the multiplier where 16  
different combinations for a0-a3 are multiplied by -1.  
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Figure A9:  L-Edit layout of the sequential clock-controller circuit  
using 12 d-type flip-flops.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure A10:  PSpice simulation showing the 11  
different clock pulses used to control data flow  
and processes in the VLSI processor.   
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Figure A11:  Final CMOS layout of the VLSI digital   
signal processor created in L-Edit Pro.    
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Appendix B:  VHDL Code for the Digital Signal Processor 
 
 

Easy Adder 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity add16 is 
port( 
  a : in std_logic_vector(15 downto 0); 
  b : in std_logic_vector(15 downto 0); 
  cin : in std_logic; 
  sum : out std_logic_vector(15 downto 0); 
  cout : out std_logic); 
end entity add16; 
 
architecture circuits of add16 is 
signal temp_sum : std_logic_vector(16 downto 0); 
begin 
 
    sum<=temp_sum(15 downto 0); 
  cout<=temp_sum(16);--carry out 
 
process(a,b,cin)--carry adjust 
begin 
if (cin='0') then 
  temp_sum<=('0' & a)+('0' & b); 
  else 
  temp_sum<=('0'& a)+('0' & b) + "00000000000000001"; 
end if; 
end process; 
 
 
  
end architecture circuits; 
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Carry Look Ahead Adder 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity add16 is 
port( 
  a : in std_logic_vector(15 downto 0); 
  b : in std_logic_vector(15 downto 0); 
  cin : in std_logic; 
  sum : out std_logic_vector(15 downto 0); 
  cout : out std_logic); 
end entity add16; 
 
architecture circuits of add16 is 
component fcadd3 
 port(c_in : in std_logic; 
   a : in std_logic_vector(2 downto 0); 
   b : in std_logic_vector(2 downto 0); 
   sum : out std_logic_vector(2 downto 0); 
   e : out std_logic; 
   r : out std_logic); 
end component; 
 
component fcadd2 
 port(c_in : in std_logic; 
   a : in std_logic_vector(1 downto 0); 
   b : in std_logic_vector(1 downto 0); 
   sum : out std_logic_vector(1 downto 0); 
   e : out std_logic; 
   r : out std_logic); 
end component; 
 
signal c3,c6,c9,c12,c15 : std_logic; 
--attribute synthesis_off of c3,c6,c9,c12,c15 : signal is true; 
signal e0,e1,e2,e3,e4,e5 : std_logic; 
--attribute synthesis_off of e0,e1,e2,e3,e4,e5 : signal is true; 
signal r0,r1,r2,r3,r4,r5 : std_logic; 
--attribute synthesis_off of r0,r1,r2,r3,r4,r5 : signal is true; 
signal vss : std_logic:='0'; 
begin 
 
u1: fcadd3 port map (cin,a(2 downto 0),b(2 downto 0),sum(2 downto 
0),e0,r0); 
u2: fcadd3 port map (c3,a(5 downto 3),b(5 downto 3),sum(5 downto 
3),e1,r1); 
u3: fcadd3 port map (c6,a(8 downto 6),b(8 downto 6),sum(8 downto 
6),e2,r2); 
u4: fcadd3 port map (c9,a(11 downto 9),b(11 downto 9),sum(11 downto 
9),e3,r3); 
u5: fcadd2 port map (c12, a(13 downto 12),b(13 downto 12),sum(13 
downto 12),e4,r4); 
u6: fcadd2 port map (c15, a(15 downto 14),b(15 downto 14),sum(15 
downto 14),e5,r5); 
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c3<=e0 or (r0 and cin); 
c6<=e1 or (r1 and e0) or (r1 and r0 and cin); 
c9<=e2 or (r2 and e1) or (r2 and r1 and e0) or (r2 and r1 and r0 and 
cin); 
c12<=e3 or (r3 and e2) or (r3 and r2 and e1) or (r3 and r2 and r1 and 
e0) or (r3 and r2 and r1 and r0 and cin); 
c15<=e4 or (r4 and e3) or (r4 and r3 and e2) or (r4 and r3 and r2 and 
e1) or (r4 and r3 and r2 and r1 and e0) or 
  (r4 and r3 and r2 and r1 and r0 and cin); 
cout<=e5 or (r5 and e4) or (r5 and r4 and e3) or (r5 and r4 and r3 and 
e2) or (r5 and r4 and r3 and r2 and e1) or  
  (r5 and r4 and r3 and r2 and r1 and e0) or (r5 and r4 and r3 
and r2 and r1 and r0 and cin); 
 
end circuits; 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity fcadd2 is  
 port(c_in : in std_logic; 
   a : in std_logic_vector(1 downto 0); 
   b : in std_logic_vector(1 downto 0); 
   sum : out std_logic_vector(1 downto 0); 
   e : out std_logic; 
   r : out std_logic); 
end fcadd2; 
 
architecture archfcadd2 of fcadd2 is 
begin 
 sum(0)<=a(0) xor b(0) xor c_in; 
 sum(1)<=a(1) xor b(1) xor ((a(0) and b(0)) or (a(0) and c_in) or 
(b(0) and c_in)); 
 e<=(a(1) and b(1)) or ((a(1) or b(1)) and (a(0) and b(0))); 
end archfcadd2; 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity fcadd3 is  
 port(c_in : in std_logic; 
   a : in std_logic_vector(2 downto 0); 
   b : in std_logic_vector(2 downto 0); 
   sum : out std_logic_vector(2 downto 0); 
   e : out std_logic; 
   r : out std_logic); 
end fcadd3; 
 
architecture archfcadd3 of fcadd3 is 
signal c1,c2: std_logic; 
begin 
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 sum(0)<=a(0) xor b(0) xor c_in; 
 sum(1)<=a(1) xor b(1) xor c_in; 
 sum(2)<=a(2) xor b(2) xor c_in;  
 c1<=(a(0) and b(0)) or ((a(0) or b(0)) and c_in); 
 c2<=(a(1) and b(1)) or ((a(1) or b(1)) and (a(0) and b(0))) or 
((a(1) or b(1)) and (a(0) or b(0)) and c_in); 
 e<=(a(2) and b(2)) or ((a(2) or b(2)) and (a(1) and b(1))) or 
((a(2) or b(2)) and (a(1) or b(1)) and (a(0) or b(0))); 
 r<=(a(2) or b(2)) and (a(1) or b(1)) and (a(0) or b(0)); 
end archfcadd3; 
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Ripple Carry Adder 

Library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity add16 is 
port( 
  a : in std_logic_vector(15 downto 0); 
  b : in std_logic_vector(15 downto 0); 
  cin : in std_logic; 
  sum : out std_logic_vector(15 downto 0); 
  cout : out std_logic); 
end entity add16; 
 
architecture circuits of add16 is 
signal c : std_logic_vector (0 to 14); --internal carry signals 
begin 
 a0: entity work.pfa port map(a(0),b(0),cin,sum(0),c(0)); 
 stage: for i in 1 to 14 generate 
  as: entity work.pfa port map(a(i),b(i),c(i-1),sum(i),c(i)); 
 end generate stage; 
 a15: entity work.pfa port map(a(15),b(15),c(14),sum(15),cout); 
end architecture circuits; 
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Shift Multiplier 

library ieee;  
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all;  
 
   entity mul4x4 is  
   port(multiplier: in std_logic_vector(7 downto 0);  
      multiplicand: in std_logic_vector(7 downto 0);  
      product: out std_logic_vector(15 downto 0);  
      clock: in std_logic);  
   end mul4x4;  
  
  architecture jrb of mul4x4 is  
  
     signal mdreg, mrreg : std_logic_vector(7 downto 0);  
 signal adderin : std_logic_vector(7 downto 0);  
     signal adderout : std_logic_vector(8 downto 0);  
     signal ppreg : std_logic_vector(16 downto 0);  
     signal clr_mr ,load_mr ,shift_mr: std_logic;  
     signal clr_md ,load_md : std_logic;  
     signal clr_pp ,load_pp ,shift_pp: std_logic;  
  
     signal mulstate : natural range 0 to 16;  
  
  begin  
 
 
  registers: process begin 
  
     if rising_edge(clock) then  
     
     --register to hold multiplicand during multiplication  
      if clr_md = '1' then  
         mdreg <= (others => '0');  
      elsif load_md = '1' then  
         mdreg <= multiplicand;  
      else  
         null;  
      end if; 
   end if; 
   
     --register/shifter to hold multiplier  
     if clr_mr = '1' then  
        mrreg <= (others => '0');  
     elsif load_mr = '1' then  
        mrreg <= multiplier;  
     elsif shift_mr = '1' then  
        mrreg<='0' & mrreg(7 downto 1);  
     else  
        null;  
     end if;  
     --register/shifter accumulates partial product values  
     if clr_pp = '1' then  
        ppreg <= (others => '0');  
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     elsif load_pp = '1' then  
        ppreg(16 downto 8) <= adderout; --add to top half  
     elsif shift_pp = '1' then  
        ppreg<=‘0’ & ppreg(16 downto 1);   
     else  
        null;  
     end if;  
   
  end process;  
 
--adder  
if (mrreg(0)=1) then 
 
 adderin <= mdreg; 
 adderout <= ('0' & ppreg(15 downto 8)) + ('0' & adderin);   
--connect ppreg to product output  
 product <= ppreg(15 downto 0);    
 else (others => 0); 
 
end if; 
 
  mul_state: process begin   
     wait until rising_edge(clock);  
     if mulstate < 16 then mulstate <= mulstate + 1;  
     else mulstate <= 0;  
     end if;  
  end process;  
   
  --assign control signal values based on state   
  state_decoder: process(mulstate)  
  begin  
     --assign defaults, all registers refresh  
     clr_mr <= '0';  
     load_mr <= '0';  
     shift_mr <= '0';  
     clr_md <= '0';  
     load_md <= '0';  
     clr_pp <= '0';  
     load_pp <= '0';  
     shift_pp <= '0';  
     if mulstate = 0 then  
        load_mr <= '1';  
        load_md <= '1';  
        clr_pp <= '1';  
     elsif mulstate mod 2 = 0 then   --mulstate = 2,4,6,8 ....  
        shift_mr <= '1';  
        shift_pp <= '1';  
     else --mulstate = 1,3,5,7......  
        load_pp <= '1';   
     end if;  
  end process state_decoder;  
   
end jrb;  
 



 39 

 

Fold Multiplier 

library ieee;  
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
  
 
entity mult is  
 port( 
   clk : in std_logic; 
   reset : in std_logic; 
   a : in std_logic_vector(15 downto 0); 
   b : in std_logic_vector(15 downto 0); 
   prod : out std_logic_vector(31 downto 0); 
   enter : in std_logic); 
end mult; 
 
architecture jrb of mult is 
 
component sgnext 
 port( 
   a : in std_logic_vector(15 downto 0); 
   b : out std_logic_vector(31 downto 0)); 
end component; 
 
signal count : integer range 0 to 16;--counts cycles 
signal aext  : std_logic_vector(31 downto 0); 
signal areg  : std_logic_vector(31 downto 0);--register for a 
signal breg  : std_logic_vector(15 downto 0);--register for b 
signal prodreg  : std_logic_vector(31 downto 0);--register for 
product 
 
begin 
 
U0 : sgnext 
  port map(a=>a, b=>aext); 
 
process(clk,reset) 
begin 
 if (reset='1') then --reset counter and done 
  count<= 0; 
 elsif (clk'event and clk='1') then 
  if (enter='1') then 
   count<=1; 
   prodreg<=(others =>'0'); 
   areg<=aext; 
   breg<=b; 
  elsif(count/=0) then 
   if (breg(0)='1')then 
    if (count=16) then 
     prodreg<=prodreg - areg; 
    else prodreg<=(prodreg + areg); 
    end if; 
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   end if; 
    if (count=16) then 
     count<=0; 
    else count<=count+1; 
    end if; 
  areg<=areg(30 downto 0) & '0'; 
  breg<='0'& breg(15 downto 1); 
  end if; 
 end if; 
end process; 
 
prod<=prodreg; 
 
end jrb; 
 
   
library ieee;  
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all;  
 
entity sgnext is  
 port( 
  a : in std_logic_vector(3 downto 0); 
  b : out std_logic_vector(7 downto 0)); 
end sgnext; 
 
architecture jrb of sgnext is 
begin 
 
gen1: for i in natural range 3 downto 0 generate 
 b(i)<=a(i); 
end generate; 
 
gen2: for i in natural range 7 downto 4 generate 
 b(i)<=a(3); 
end generate; 
end jrb; 
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Booth Parallel Multiplier 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity mul16 is  --16 by 16 two's comp multiplier 
port( 
 a : in std_logic_vector(15 downto 0); 
 b : in std_logic_vector(15 downto 0); 
 p : out std_logic_vector(31 downto 0)); 
end entity mul16; 
 
architecture circuits of mul16 is 
signal zer : std_logic_vector(15 downto 0) :=x"0000"; --zeros 
signal mul0 : std_logic_vector(2 downto 0); 
subtype word is std_logic_vector(15 downto 0); 
type ary is array (0 to 7) of word; 
signal s : ary; 
begin 
 mul0<=a(1 downto 0) & '0'; 
 a0: entity work.booth port map(mul0,b,zer,s(0),p(1 downto 0)); 
 a1: entity work.booth port map(a(3 downto 1),b,s(0),s(1),p(3 
downto 2)); 
 a2: entity work.booth port map(a(5 downto 3),b,s(1),s(2),p(5 
downto 4)); 
 a3: entity work.booth port map(a(7 downto 5),b,s(2),s(3),p(7 
downto 6)); 
 a4: entity work.booth port map(a(9 downto 7),b,s(3),s(4),p(9 
downto 8)); 
 a5: entity work.booth port map(a(11 downto 9),b,s(4),s(5),p(11 
downto 10)); 
 a6: entity work.booth port map(a(13 downto 11),b,s(5),s(6),p(13 
downto 12)); 
 a7: entity work.booth port map(a(15 downto 13),b,s(6),p(31 downto 
16),p(15 downto 14)); 
end architecture circuits; 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity booth is --special adder for signed mult 
port( 
 a : in std_logic_vector(2 downto 0);  --booth multiplier 
 b : in std_logic_vector(15 downto 0); --multiplicand 
 sum_in : in std_logic_vector(15 downto 0); 
 sum_out : out std_logic_vector(15 downto 0); 
 prod : out std_logic_vector(1 downto 0)); 
end entity booth; 
 
architecture circuits of booth is 
subtype word is std_logic_vector(15 downto 0); 
signal bb : word; 
signal psum : word; 
signal b_bar: word; 
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signal two_b : word; 
signal two_b_bar : word; 
signal cout : std_logic; 
signal cin : std_logic; 
signal topbit : std_logic; 
signal topout : std_logic; 
signal nc1 : std_logic; 
 
begin 
 two_b<=b(14 downto 0)&'0'; 
 b_bar<=not b; 
 two_b_bar<=b_bar(14 downto 0)&'0'; 
 bb<=b when a="001" or a="010"     --5 intput multiplexor 
  else two_b when a="011" 
  else two_b_bar when a="100" 
  else b_bar when a="101" or a="110" 
  else x"0000"; 
 cin<='1' when a="001" or a="101" or a="110" 
  else '0'; 
 topbit<=b(15) when a="001" or a="010" or a="011" 
  else b_bar(15) when a="100" or a="101" or a="110" 
  else '0'; 
a1:entity work.add16 port map(sum_in,bb,cin,psum,cout); 
a2:entity work.pfa port map(sum_in(15),topbit,cout,topout,nc1); 
 sum_out(13 downto 0)<=psum(15 downto 2); 
 sum_out(15)<=topout; 
 sum_out(14)<=topout; 
 prod<=psum(1 downto 0); 
end architecture circuits; 
 
Library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity pfa is 
port( 
  a : in std_logic; 
  b : in std_logic; 
  cin : in std_logic; 
  s : out std_logic; 
  cout : out std_logic); 
end entity pfa; 
 
architecture circuits of pfa is  
begin 
 s<=a xor b xor cin; 
 cout<=(a and b) or (a and cin) or (b and cin); 
end architecture circuits; 
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Data Management 

library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity data_manage is --data management for DSP Processor 
port( 
  clk : in std_logic; 
  X_in : in std_logic_vector(15 downto 0); 
  count_out : out std_logic_vector(2 downto 0);--used to check 
the counting cycles to see if clock is working 
 
  Y_out : out std_logic_vector(15 downto 0)); 
end entity data_manage; 
 
architecture circuits of data_manage is  
signal count : std_logic_vector(2 downto 0) := "000"; --counter for mux 
signal a1 : std_logic_vector(15 downto 0) :="0000000000000000";  --a1 
coefficient 
signal a2 : std_logic_vector(15 downto 0) :="1001100001010010";  --a2 
coefficient 
signal b0 : std_logic_vector(15 downto 0) :="0000000000000000";  --b0 
coefficent 
signal b1 : std_logic_vector(15 downto 0) :="0111001111010111";  --b1 
coefficent 
signal b2 : std_logic_vector(15 downto 0) :="0111001111010111";  --b2 
coefficent 
signal temp_reg : std_logic_vector(15 downto 0); --temp register to 
store summed values 
signal wn : std_logic_vector(15 downto 0):="0000000000000000";  --Wn 
register  
signal wn_1 : std_logic_vector(15 downto 0):="0000000000000000";  --Wn-1 
register  
signal wn_2 : std_logic_vector(15 downto 0):="0000000000000000";  --Wn-2 
register 
signal mul1 : std_logic_vector(15 downto 0);  --signals sent to 
multiplier 
signal mul2 : std_logic_vector(15 downto 0); 
signal add : std_logic_vector(15 downto 0); 
signal product : std_logic_vector(31 downto 0);--signal from 
multiplier 
signal temp: std_logic_vector(16 downto 0); 
signal tempcarry: std_logic_vector(15 downto 0); 
begin 
U0: entity work.mul16 port map(mul1,mul2,product); 
 
 
count_out<=count; 
 
 
Clock: process(clk) 
begin 
 if rising_edge (clk) then 
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  if (count/="110") then 
   count<=count+"001"; 
  else count<="000";  -- resets count 
  end if; 
 end if; 
 end process; 
 
Mux: process(count) 
begin 
 if (count="001") then 
 mul1<=a1; 
 mul2<=wn_1; 
 add<=x_in; 
 elsif (count="010") then 
  mul1<=a2; 
  mul2<=wn_2; 
  add<=temp_reg; 
 elsif (count="011") then 
  wn<=temp_reg;--stores wn 
  mul1<=b2; 
  mul2<=wn_2; 
  add<=x"0000"; 
 elsif (count="100") then 
  mul1<=b1; 
  mul2<=wn_1; 
  add<=temp_reg; 
 elsif (count="101") then 
  mul1<=b0; 
  mul2<=wn; 
  add<=temp_reg; 
  wn_2<=wn_1; 
 elsif (count="110") then 
--  y_out<=temp_reg; 
  Y_out<=(not temp_reg(15)) & temp_reg(14 downto 0);  
  Wn_1<=wn; --stores wn to wn-1 
 end if; 
end process; 
 
 
adderprocess:process (clk)--adder process used to ensure it doesn't add 
until mult is done 
begin          --and also 
used to correct the extra sign bit problem if mul1 and mul2 are the same 
 if falling_edge(clk) then 
  if (mul1=mul2) then  
   temp<=('0' & add)+('0' & product(29 downto 14));  
   
   tempcarry<=('0' & add(14 downto 0))+('0' & product(28 
downto 14)); 
  else 
   temp<=('0' & add)+('0' & product(30 downto 15));  
   
   tempcarry<=('0' & add(14 downto 0))+('0' & product(29 
downto 15));    
 
  end if; 
 end if; 
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end process adderprocess; 
 
processcorrect:process(temp)--process used to correct overflow prob  
begin 
 if (temp(16)<tempcarry(15)) then 
  temp_reg<="0111111111111111";--sets to highest positive 
 elsif (temp(16)>tempcarry(15)) then 
  temp_reg<="1000000000000000";--sets to lowest negative 
 
 else 
  temp_reg<=temp(15 downto 0); 
 end if; 
end process processcorrect; 
  
 
  
end architecture circuits;  
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Expansion Board Code 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_signed.all; 
 
entity expansion is  
port( 
  clk1 : in std_logic; --clock for dsp 
--  clk2 : in std_logic; --clock for 74LS139 
  X_in : in std_logic_vector(9 downto 0); 
  count_out : out std_logic_vector(1 downto 0); --output for 
74ls139 
  Dec_out : out std_logic_vector(3 downto 0)); --output to 
display driver 
  constant limit : integer := 300; 
end entity expansion; 
 
architecture circuits of expansion is 
signal count : std_logic_vector(1 downto 0) := "00";  --counter 
for 74ls139 
signal countclk : integer := 0; 
signal y_out : std_logic_vector(15 downto 0);  --output from dsp 
signal dec_temp : std_logic_vector(3 downto 0); --temp reg for inside 
process 
signal X_adj : std_logic_vector(15 downto 0);  --used to make 
X_in 16 bits 
signal clkadj : std_logic :='0'; ---used to slow down the 20ns internal 
clock 
signal clkadjtemp : std_logic :='0'; 
begin 
 X_adj<=(X_in & "000000");  --add 6 0's to right of X_in 
 clkadj<=clkadjtemp; 
U0: entity work.data_manage port map (clkadj, X_adj, y_out); 
 
 count_out<=count; 
 Dec_out<=dec_temp; 
   
  
process(clk1) 
begin 
if (clk1='1' and clk1'event) then 
 if countclk<limit then  
  countclk <= countclk+1; 
 elsif countclk=limit then 
  countclk<=0; 
  clkadjtemp<=not clkadjtemp; 
  end if; 
end if; 
 
 
 
end process; 
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process(clk1) 
begin 
 if rising_edge(clk1) then 
  if (count="11") then 
   count<= "00"; 
  else count<=count + "01"; 
  end if; 
 end if; 
end process; 
 
process(count)  --mux for display decoder 
begin 
  if (count="00") then 
   dec_temp<=Y_out(15 downto 12); 
  elsif (count="01") then 
   dec_temp<=Y_out(7 downto 4); 
  elsif (count="10") then 
   dec_temp<=Y_out(11 downto 8); 
  elsif (count="11") then 
   dec_temp<=Y_out(3 downto 0); 
  end if; 
end process; 
    
 
end architecture circuits; 
 

 

 


